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THREE-DIMENSIONAL NUMERICAL SIMULATIONS
OF FELS BY TRANSVERSE MODE SPECTRAL METHOD

I. INTRODUCTION

Three-dimensional simulations of the FEL gain process will become increasingly im-

portant in the design, optimization and interpretation of FEL experiments. Since the

fundamental FEL concepts have been successfully demonstrated, the FEL is now pushing

-* the limits of the FEL capabilities in all directions. Due to the increasing complexity of

FEL experiments, simple one-dimensional theory is often not adequate. At the same time.

however, the analytical three-dimensional results are only obtainable for a limited number

-: of special operating conditions. The importance of the three-dimensional effects will vary

with the experiments. Some examples of the three-dimensional effects that need to be

understood are:

(a) The transverse electron beam profile is often asymmetric, resuhing in the asymmetry

oi the radiation field. This is most pronounced in the storage rings and circular

microtrons.

(b) The radiation field varies both in the transverse and axdal directions. There is a

' crucial trade-off of large filling factors with short Rayleigh lengths and vise versa.

The optimal situation varies with the experiments.

* (c) Betatron oscillations from the wiggler field cause electrons to sample a varying radia-

tion field. Under certain situations, this can cause betatron-synchrotron instabilities.

(d) FELs are pushing toward high gain operation. Strong self-focusing in a high gain

FEL can substantially alter the wave front properties. A resonator, not self-consistly

designed with FEL physics. most likely is not the optimal design for the high gain

FEL operation.

(e) Sideband instabilities in an oscillator can lead to pulse breakup and affect the quality

of the radiation beam.

The analytical and numerical methods employed in the study of the transverse ,mria-

tion of the wave equation have taken the approaches of transverse mode spectral method.' - 5
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transform spectral method, ' -' spectral method, 2 finite difference method," ,  and Lienard-

Wiechert potential method'". The different methods refer to the techniques used to evalu-

ate the V.AR term in the wave equation, where AR is the vector potential of the radiation

field. All three kinds of spectral methods involve representing the solution of the radiation

field as a truncated series of known functions oi the independent variables.

The transverse mode spectral method decomposes the radiation field into a truncated

series of a complete set of orthogonal functions, which satisfy the free space wave equations

with the appropriate boundary conditions. One takes advantage of the transverse mode

properties to reduce the wave equation to a set of first order differential equations.

For the spectral method and transverse spectral method, the series takes on the form of

a transform, and the wave equation reduces to a simple form in the transformed variables,

- i.e., ViAR has an analytical form in the transform space. The transform spectral method

requires numerically taking the transform of the driving current. The spectral methods

- .'., describe the current in terms of the Lagrangian variables, and the current term can be

evaluated analytically.

In Sec. II. we will outline the transverse mode spectral method in general. i.e.. not

specifying the form of the transverse modes. This formulation will include slow transverse

motion and betatron oscillations of the electrons in the realistic wiggler, finite emittance.

energ y spread and self-consistent a-dal particle dynamics. This method conserves energy.

The formalism is extended to the study of sideband formation - 2 ' 2- 2 on a long electron

pulse in the FEL oscillator.

In Sec. IMl, we outline the spectral and the transverse spectral methods. The three

different spectral methods are compared in this section.

The advantages of the transverse mode spectral method are: i) Free space wave prop-

agation. finite size mirrors, and apertures can be handled analytically. ii) It is easy to

include transverse particle motion exactly. iii) This method lends itself to analytical and

.. semi-analytical solutions and can provide physical insight for many problems. iv) The

transverse boundary conditions are included automatically in the waveguide mode expan-

sion.

2



In Sec. IV, we apply the transverse mode spectral method to an example with

self-focusing properties. In this example the electron beam focuses due to Tain and

refraction. 13 tL

II. THE TRANSVERSE MODE SPECTRAL METHOD

A. THE WAVE EQUATION

In this paper, we will consider only the linearly polarized wiggler, since that is the

most common wiggler field. The formulation for a circularly polarized wiggler requires

only minor modifications. The realistic magnetic field will be expressed in terms of the

vector potential of the wiggler,

fo

where A.,.(y () = A:(z)cosh(k~y), A,(z) and k() are the slowly varying amplitude

and wavenumber of the wiggler.

When ,y << 1. one can use the approximation -4- A fz) for the calculation

of gain and axial particle dynamics. The accurate form for .4A,, is only necessary in the

calculation of the betatron oscillations. For convenience, we define a dimensionless wiggler

parameter K(Z) = ([ei' /. m-c2)A(:).

We also include a DC accelerating electric field." EDC:, for the purpose of efficiency

enchancement. For convenience, we define a dimensionless parameter SDc = ICIEDc/moc2 .

The radiation field will be expressed as
~excpfi(kz - ,t)I

AR(,,y.Z,t) = -A(., y,z) 2 +c .c., (2)

where

L M

A. A..:) ( :)e +- Ay (;,(y,,Z) d
. 4-0 rn=O

ea.r = G;,m + Fii,mey

is the general form of the transverse mode. A..r _= I icm is the complex amplitude of

the normal modes, Gt,.n = , represents the x-component of the complex transverse

mode. F,.n is the y-component of the complex transverse mode. (which may be zero.)

A,(z..:) = y A.(z.y. :) exp(i;(z.,j. :)). and k = /c. We use lower case to denote the

3



normalized parameters of the radiation field. such as a.(z. y, z) = (Iel/v .moe2)A (z, y, Z)

and ae.m = (leIv/12moc2)At,rn.

The function ij,m(Z, y, z) should satisfiy the free space wave equation and the appro-

priate boundary conditions, i.e.,

12i  (_+ -z c. t e,,,z ,. :(e' .m&(k ' : ' ) -- O. (31

The orrhogonality condition is

JJ M i mddy = ,5 ,m, (4)

where the integration is over the appropriate radiation domain.

The wave equation for the FEL is

92 1C9 4 4r
+ et AR= -J (5)

Substituting the expression of the radiation fieid into the wave equation. and making the

slowly varying approximation, we obtain

. 2ik O ., e.( s- + c.C. = _8r j. (6)
C

*. ".. .Multiply both sides of Eq. (6) by exp(-i(kz - 't)) and integrate in time over a period.

Then, dot both sides by em and integrate over the transverse dimension. The result is

.A ..,, j4 ,r/w dt
,j dxjd .. G 7

Now we need to evaluate the current. The fluid-like electron density is

:..].: D(. y. px. t pp .,pz. t) =do (zo,yo? p--.O.p,, pz., ')(x - )(y -j it-r

The variables with "-' and the variable r axe functions of the Lagrangian variables

. o. , Pz,o. P),., p:.o. o,..:. where z. yo are the initial transverse positions at the entrance

of the wiggler : = 0, pz., p,,o are the initial transverse momentums at = 0. p. is the

initial axial momentum spread at o 0. -,to is the initial phase of the electron in

4
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the ponderomotive potential well, to is the time the electrons enter the wiggler at 0 = ,

and r is the time that the electron reaches position z. The function do is the initial phase

space density distribution, including the effects of emittance and energy spread.

The fluid-like beam density can be defined as

nl.' yt)= dpJ dpy dp D (, y. P. p. p

We will define the effective area of the electron beam to be

=' ( - ~xfd n (x,y,:.) (10)

where no = nl(, Y, , t)maZ.

The current density can be defined as

, = -jell,-o dpz dpy dpzD (x. y.z px, py p- t) ".
I•O Y f1'J.-"P. ~'-)"i 0

" -elno'o j de, / dx] duo dpz,o dpy,o dp_.o (II)

-do0 (o,yo..pP, .yo)jp(z - '(:]- id ) t -r).
p n,

The final form of the wave equation is

dasm -iCFt(:)K(:) (12)

where

..-> dx dydio dp". dp,"".' 1) I-cc, '-01 I. _ -c.0/ 0...l .,

is the ensemble average. :he normalization is < (1) >= 1. C ( '/c)(3_,/2k) . ab

(4,e':2no/mo)1/2. Fl(:) = Jo(b) - JI(b) comes from the fast eiectron oscillation in the

z-direction due to the linearly polarized wiggler, b(:) - K/2(1 -K 2 ), 0 = jo (:') +

k - .jdz'+ Tz',, J3 /c. 3° = uo/c. and to is the mean initial axial velocit.

5
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B. PARTICLE DYN.A-MICS

The mean transverse particle position and momentum, in Seneral. should be integated

along with the axial particle momentum equations. Under certain circumstances. analytical

forms for the transverse particle trajectories are sufficient.

Taking zhe betatron oscillations as an e:ample, the particle motion in the x-direction.

without any additional external focusing, can be written as

0 = z + (PXO/'7omOc):. (14)

The particle motion in the y-direction exhibits betatron oscillations. Taking ky << 1.

the particle dynamics in the y-direction 1 6 '- 7 is approximately

( I)1/2,j= \ ] cos( k.(,3 d +03), (S

where k 3 Y y )1/ 2 . = py, /k 3 (.O),'mC 2 . and 03 = cos-(yi/y).

The particle motion in the z-direction is best written in terms of the equation for the

total relativistic gamma factor

' " - = -. w()K-()a(..,.:)lsin(,u- + (.iijz)) CDC. (16)
dz

and the equation governing the phase

d-, (1+3:,)k,, d(
d. 2 = + Dc)+T+ 6B ,,. . (17)

where
dk , k dK 2  1 + K 2----= -':-'-. *. (is)
d: 2,,2 d.

is the degree of taper for the efficiency enhancement schemes.

'..

= k ~k4O) d{I~ 2 (:)Jz) (i, =i, + c os ,d ) z1

includes the effect resulting from the combination of betatron oscillation and contoured

B.,, aeld. and

D(i'o.Pyo. :) = 2 kj(z')dz' +2o.
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Equations (12, 16-17) form the self-consistent set of equations for the radiation field and

the particle dynamics.

C. CONSERVATION OF ENERGY

We can show that this formulation conserves energ-y. To do this. we rewrite Eq. (16)

in terms of the amplitude of each mode.

d,; k
""-= .F- (zSK(-) / g,. (z, , ,:Ia,.m( ) ( 3' m z sin O Do . (20)

, - where "'eam = ,b + 9 t,,m + O_.m is the phase associated with each mode. We have assumed

here that << 2,r. The spatial rate of change of the total electron beam energy
' is

(r-n~c2dz,/d:) = DFi (:)A,, (z) j._jm(:)Ie -m3e.m,)z (ge.mn P- - sin iVt-) 21

where D = o/~)~c) 0 .The spatial rate of change in the radiation energy is

dIR k 2  dfAern12 ... I( 1 )

d d(

Applying Eq. (12) to Eq. (22), we can show that the energy is conserved. Le., the energy

gained by the radiation is equal to the energy lost by the electrons pius the energy supplied

by the a-dal DC electric field.

=I (mC 2  + (moC 2DC). (23)":dz dd

D. THE CHOICE OF THE TR.LNSVERSE MODES OF THE WAVE EQUATION

The choice of the normal modes, however, will depend on the geometry of the FEL of
interest. A few examples of the possible choices of the normal eigenmodes are given below:

" (a) Gaussian-Hermite expansion allows the most flexibility in the modeling of the FEL

physics of interest in an open resonator. The expressions for e,m = G,6ne. are

7
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9tM" H, ,x, H=,-e(p + 9j2)), (24a)

.p2 = r(a--+-)s-( + )va-'s'. (24b)

where -l V'2z . y = v'2y!w(:), Ht is the Hermite polynomial of the "th order.

".I: -z,)/:. :c is the axial location of the minimum waist, w(:) w,(I + )1/ .

w,' is the spot size. and zo = ugkl2 is the Rayleigh length.

(b) When the electron beam and the resonator system are axially symmetrical, and when

the betatron oscillations are not included in the model of the linearly polarized wiggler,

then the radiation can be assumed to be axially symmetrical. The Gaussian-Leguerre

modes are the choice for the expansion, and each term is expressed as 6o,m Go,Mr ,

where

212
go. = L,(,,()exp( 2r - (--) (25a)

r2

Oo,m = -(2m + 1) tan-'() + 77, (25b)

L 'M is the Laouerre polynomial.

(c) In a low rain oscillator, the best choice would be the eigenmodes of the resonator

cavity"a including the effects of apertures. finite size mirrors and resonator losses. The

eien modes in turn can be written in terms of the appropriate Gaussian-Laguerre or

Gaussian-Hermite modes. The advantage of going to the resonator cavity modes is

that the losses for the higher order resonator cavity modes increase rapidly with the

cavity mode number, such that only a few modes need to be kept in the caluclation.

In addition there is no need to calculate the radiation outside the FEL wiggler.

(d) Closed wave-guides can be used to conine the radiation beam over a distance long

compared to a Rayleigh length. If the wave-piide is not rectangular. the vector poten-

tial of the wavegilide modes generally have both x and y components. For the analysis

presented here. we have to assume the transverse guide dimensions are large compared

to a radiation wavelength. The theory is also restricted to low-order, low-loss modes

whose propagation constants k + Re(+h.rn) are nearly equal to the plane-wave value.

i.e., Re(.,n ) << k. For wavelengths that are comparable to the waveguide diameters

- 12iS



t.

or when multimode analysis are desired, this method has to be modified slightly to

include the different frequencies and axial wavenumbers associated with the different

wave gaide modes. The formulation should be similar to that described in the Sec.

II.F with sidebands.

*. E. COMPUTATION SPEED

The cost of computation per axial step is spent mainly for the radiation field. The

number of operations is a l.V,-( -)(-If ± 1) to integrate Eq. (12), where X, is the total

number of electrons, and a, is a numerical constant. The particle orbit equations require

a,2,(L + 1)(M + 1).V,/No number of operations to evaluate the radiation field a, (. , z).

and a3N, number of operations for the integration, where A, is the number of electrons

per ponderomotive wave, and a2 and a. are numerical constants. In general, Eq. (16) is

aster than Eq. ('20). which requires a4 (L - 1)(. - 1).Y. number of operations.

F. FREQUENCY SIDEBANDS AND PULSE SLIPPAGE

The electron oscillation in the ponderomotive potential well is called the synchrotron

oscillation. We define K,, to be the synchrotron wavenumber of the electron traveling

exactly along the z-axis

. t,~ ~~ w (:)a()ao

When the intensity of the radiation becomes high, such that the electrons make half a

bounce in the wiggler. then sideband frequencies (-an grow. One-dimensional simulations -

and thre-,Iimensional simulations -2 show that the amplitude of the radiation feld be-

comes chaotic, and the quality of the radiation field becomes degraded.

In order to understand the effect of sidebands on wavefront curvatures, the three-

*dimensional formulation is necessary. We assume periodic boundary conditions for the

radiation ield of length e,. which is chosen to be many times the amplitude modulation

distance and the pulse slippage distance. If the length of the electron bean is much longer

9



than 4b, only a section of a long electron beam needs to be modeled. If the electron beam

is shorter than t.b, then the whole pulse shape must be included.

The radiation field can be written as

AR(z.y. :.t) = -A(. !,t) exp(ik) 127)

where
?2 A(x, y. .t)=.,, (xz., ii. + A. (x.y, Z)eLi

N L N1

.' - A. n=O .=- m'--O

is a slowly varying function of position following the radiation pulse, k (1 + 3-.o 2( /( 1+

* -. 7 XK2))k. is the resonant wavenumber, .k, = (n - 1)6k, 6k = 2:r/tb, and = - ct.

A(z. .j. t) is a slowly varying function of position and time following -the radiation pulse.

Following the same procedure outlined in Sec. II.A and II.B. we obtain the self-

consistent set of equations for , , and w. The independent Lagrangian variables are

X0. !Jo.Pz.o. PY.o.Pzo, vo, xFo. b. and

I da t.,n., n_____ _____ ____+ _ _____ ____

I dz, k7F K a -(Z, t)sin(IV + P(, t(29)
c dt -

and

-2 -- +CDC) + T + (0)

where

0 ' d uo L dp jo.o..o

,"':.. ..) dozoy p,,P op., (~.f~}31)

ro. go! pxo ytoO-,j 6o oII
no,,.,

is the ensemble average. 'Po =  /-,,), and 0 < , < .b are the axial location of the
,.t~

o
.

electron in the electron pulse at t=O. , = f(k(ct') + k) dt' - ckt + ?o", = fT i.dt'+ $0.

10
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Z.'.t Z %P"/6k - s. and 8 = ct(1 + K')/2, is the pulse slippage distance.

The method described above is straightforward. Since the number of electrons that

must be used to model the electron beam with finite emittance and finite length is large.

any general numerical method, including this method. requires a considerable amount of

computation time. For limited computational resources. it is necessary to form simplified

models. This formulation lends itself towards semi-analytical models of finite length elec-

tron pulses. - 2 ,18 where some of the integrals in the expression for ensemble average can

be evaluated analytically.

III. THE SPECTRAL AND TRANSFORM SPECTRAL METHODS

The principle behind the spectral and transform spectral methods is similar to the

transverse mode spectral method. The major difference comes from the representation

of the radiation field, for example. Fourier series in the Cartesian geometry and Hankel

transform in the axially cylindrical geometry.

Let us take the Fourier series for the illustration. The domain for the radiation field

is -D 2 /2 < z < D_.2 -and -D,/2 < y < D,/2. and the boundary conditions are periodic.

The slowly varying amplitude of the radiation field is written as

A(zy.z)-- E "m'r (zye,( kz)+'mY)e (32)

where kt = 2ri/Dz and km = 2-rm!D . The equation for the amplitude in terms of the

current is

[' d .?+f
4. =. i

"CJ- ./' k j

When the current J. is formulated in Eulerian variables for the x and y coordiantes.

then the right-hand-side of Eq. (33) has to be evaluated numerically, and th method is

called the transform spectral method. If the current is formuiated in Latrangian '.-ariables

(ro. yo.p z,o.py,o.p:.o, 'o) then Eq. (3.) can be reduced to

L,

: : .: : .: ~ i ..: = - -: : " : .? : : _ ': . - . : , : :- -- . . : -:: : :. ... i : . ." : :. - - ::: : :: : :: : :: : : :: 1 1.: : :



+ Atk,~ iCFi(:)K(-) 1(4.. • - .(34)
,d,1.( 2k 3 I.

The particle dynamics equations (16-17) are also applicable here. For a Fourier series

exansion. one can show that the energy is conserved in the D. by D. domain for -he

spectral method.

In general, the Eulerian formulation of the current is inferior to the Lagrangian for-

mulation. The Eulerian formulation is not convenient to use for the study of betatron

effects, because the numerical transforms of Eq. (33) require the current to be evaluated

at prespecified grids. This problem can be reduced, if the number of grids used across the

electron beam is large, which in turn requires a larger number of terms in the expansion.

For the Hankel transform, there is the additional problem of numerical errors resulting

from numerical integration with a finite number of grids in an infinite integration domain.

The estimate for the speed of computation for the spectral method has the same form

as in Sec. II.E. The value for the coefficient a l , a2 and a3 depends on the expansion. and

they are smaller for the Fourier transform and larger for the Hankel transform.

The transverse mode spectral method, in some instances, is better than both the spec-

tral and transform spectral methods, because of the following properties. The propagation

of the radiation field through apertures, and the reflection and transmission of the radia-

tion field at mirrors can be evaluated in terms of matrix multiplication of the amplitudes of

the normal modes. The spectral and transform spectral methods require an additional step

in converting the radiation field into Gaussian modes. Finally, the transverse mode spec-

tral method is easier to implement for calculations in complicated waveguide geometries.

because the boundary conditions are automatically included.

The transverse mode spectral method is not the best numerical scheme when the

FEL wiggler is many times the Rayleigh length and the FEL radiation is strongly focused

to the electron beam. The reason is that the higher order modes become more and more

important. The number of transverse modes, which have to be included, becomre large. The

Fourier series spectral method employing the Lagrangian Formulation is more appropriate

for this type of simulations.

12
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IV. SELF-FOCUSIqG EXAMPLE AND DISCUSSION

A three-dimensional code employing Gaussian-Hermite expansion of the radiation field

is applied to a linearly polarized wiggler. The following examples will show self-focusing

properties of the FELs.

The electron beam is assumed to have a Gaussian profile and a radius of 2.25 x 10-2

cm. The current is 50 A and the energy is 109.6 MeV. The wiggler has a magnetic field

BZ = 6.3 kG. period of 2.4 cm and length L, = 6 m. The incident 0.5 pm radiation at

-the entrance of the wiggler is a Gaussian TEMoo mode with a minimum waist w, = 0.06

cm located at : = L,/2. and a power of 5.8 x 105 W.

In this example. the electron beam radius is much smaller than the spot size, i.e.,

rb << w,. If the radiation has the spot size of the electron beam, its Rayleigh length

would be only 32 cm. A plot of the power gain is shown in Fig. 1. The FEL is operating

in the high gain regime, and the radiation saturates at 4 m.

Figures 2.a-e shows the radiation amplitude at z=0. 150, 300, 450 and 600 cm plotted

from -4w0 to 4w, in both the x and y plane. In this example, the self-focusing phenomenon

is not only due to refraction. but also gain. The peak amplitude in Figs. 2a-e are 4.5x 10- 2 .

1.1 x 10 - 2, 4.6 x 10-2, 4.1 x 10 - 2 and 2.6 x 10 - 2 respectively. At 150 cm, the laser beam is

already narrowed down significantly. The corresponding phase front is shown in Fig. 3.a.

The focusing due to the electron beam is manifested by the small mound at the center.

The beam radius remains at roughly the same size from 150 cm to the end of the

wiggler. Due to electrons oscillating away from the bottom of the ponderomotive potential

well, the radiation loses energy after 4 m. In Refs. 13-14, it was shown analytically that

FEL radiation is not only governed by gain and diffraction, but also by refraction when

operating in the trapped particle mode. For this case, the resonant phase is at the origin,

i.e., sin 'R = 0. Even though the radiation is losing energy after z = 4 m, the radiation

beam around the electrons still focuses, while the radiation further away from the electrons

defocuses, as shown in Fig. 2.e. This is in qualitative agreement with the theory given by

Refs. 13-14. Figure 3.b shows the focusing properties of the wave front. It is important

that the radiation beam does not defocus when the radiation is losing energy due to the

bouncing of the electrons in the ponderomotive potential well.
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The FEL radiation does not always undergo focusing, for example. the electron beam

could dig a hole in the laser amplitude profile when the FEL is operating with loss in the

low gain regime and large frequency mismatch.

Next. we give an example where the center of the electron beam does aor travel down

the center of the wiggler due to irregularities in the magnetic wi-ger field. The center of
the electron beam is assumed to execute a slow sinusoidal motion, ycntr = r~, sin(,-:L ).

The radiation guiding properties of the e-beam is still clearly evident. Fig. 4. The peak

amplitude is 2.4 x 10-2. The motion of the center of the electron beam, however, causes

significant distortion of the radiation beam.

In summary, this paper outlines one method of solving the three-dimensional FEL

radiation field self-consistently with the electron dynamics. The advantages of this method

are: 1) The boundaries in the transverse directions are included automatically. 2) It is easy

to incorporate transverse particle motion. 3) Free space prapagation. finite size mirrors

and apertures can be handled analytically. 4) This method lends itself to analytical and

semi-analytical solutions.

The disadvantages of this method is the increase in the computation time if a large

number of electrons are used in the radial direction, and if a large number of modes are

- required.

The numerical examples illustrate the self-focusing property of the EEL. Under appro-

priate conditions, the laser radiation maintains a roughly constant radius radiation beam.

We also showed that the irregularities in the wiggler field can cause significant distortion

of the radiation beam. The implications of this for the FEL design are important. For

electron beams with good emittance. it is possible to focus the beam to a small area and

operate the FEL in the high gain regime. and not have to worny about diffraction. In this

case it is important to design the resonator cavity including the FEL gain model.
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(b)

Fig. 2 (Cont'd) -Plots of the amplitude of the radiation field in the x and y plane at
(a) z - 0, (b) z -150 cm, (c) z - 300 cm, (d) z -450 cm and (e) z -600 cm.
The tick marks are separated by a distance w,.
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(c)

Fig. 2 (Cont'd) -Plots of the amplitude of the radiation field in the x and y plane at
(a) z - 0, (b) z - 150 cm, (c) z - 300 cm, (d) z -450 cm and (e) z -600 cm.
The tick marks are separated by a distance w0 .
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(d)

Fig. 2 (Cont'd) -Plts of the amplitude of the radiation field in the x and y plane at
(a) z - 0, (b) z - 150 cm, (c) z - 300 cm, (d) z -450 cm and (e) z -600 cm.
The tick marks are separated by a distance w,.
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(e)

Fig. 2 (Cont'd) -Plots of the amplitude of the radiation f ield in the x and y plane at
(a) z - 0, (b) z - 150 cm, (c) z - 300 cm. (d) z -450 cm and (e) z 600 cm.
The tick marks are separated by a distancew.
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Fig. 4 -Plot of the amplitude of the radiation field in the x and y plane for the
electron beam that deviated from the axis. The tick marks are separated by a distance
Wa.
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